Docker安装Redis

Docker安装Redis

1. 准备工作

1
docker pull redis

创建配置文件目录, 配置文件实例见文章底部

1
sudo mkdir -p /usr/local/redis/conf

创建数据目录

1
sudo mkdir -p /usr/local/redis/data

2. 启动容器

无配置文件启动

1
docker run -itd --name myredis -p 6379:6379 redis
1
docker run -itd --name redis -p 6379:6379 redis --appendonly yes --maxmemory 100mb --requirepass 123456

带配置文件启动

1
2
3
4
5
6
7
8
9
10
11
12
sudo docker run \
--restart=always \
--log-opt max-size=100m \
--log-opt max-file=2 \
-p 6379:6379 \
--name redis \
-v /usr/local/redis/conf:/etc/redis \
-v /usr/local/redis/data:/data \
-d redis redis-server /etc/redis/redis.conf \
--appendonly yes \
--requirepass 123456 \
--maxmemory 100mb

–restart=always 总是开机启动
–log是日志方面的
-p 6379:6379 将6379端口挂载出去
–name 给这个容器取一个名字
-v 数据卷挂载
/usr/local/redis/myredis/myredis.conf:/etc/redis/redis.conf 这里是将 liunx 路径下的myredis.conf 和redis下的redis.conf 挂载在一起。
/usr/local/redis/myredis/data:/data 这个同上
-d redis 表示后台启动redis
redis-server /etc/redis/redis.conf 以配置文件启动redis,加载容器内的conf文件,最终找到的是挂载的目录 /etc/redis/redis.conf 也就是liunx下的/home/redis/myredis/myredis.conf
–appendonly yes 开启redis 持久化
–requirepass ****** 设置密码 (如果你是通过docker 容器内部连接的话,就随意,可设可不设。但是如果想向外开放的话,一定要设置

测试是否启动成功

1
docker ps -a | grep myredis

查看容器30分钟内的日志

1
docker logs --since 30m myredis

3. 使用

进入容器内部redis-cli

1
docker exec -it myredis redis-cli

验证密码

1
auth ******

redis-cli使用

1
redis-cli -h IP地址 -p 端口 -a 密码

【Redis】redis安装与客户端redis-cli的使用(批量操作)

配置文件

redis.conf

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#  ip 配置, 127.0.0.1代表仅支持本地连接
# bind 127.0.0.1

# 关闭保护模式, 以支持远程连接
protected-mode no

# 端口号
port 6379

# 表示正在进行三次握手和完成三次握手队列的长度
tcp-backlog 511

# 空闲客户端自动关闭延迟, 为0表示永不超时, 单位为秒
timeout 0

# 每隔300秒检测一次连接是否存活, 不存活则释放连接
tcp-keepalive 300

# 设置redis后台启动
daemonize yes

# 每次运行将进程号保存到文件中
pidfile /var/run/redis_6379.pid

# 日志级别 debug, verbose, notice, warning
loglevel notice

# 日志文件输出路径
logfile ""

# 最大数据库数量
databases 16

# 设置访问密码
requirepass "123456"

# 客户端最大连接数
# maxclients 10000

# redis最大内存占用
maxmemory 100mb

myredis.conf

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# Redis configuration file example

# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
# 内存大小的配置,下面是内存大小配置的转换方式
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
# 内存大小的配置,不区分大小写
################################## INCLUDES ###################################

# Include one or more other config files here. This is useful if you
# have a standard template that goes to all Redis server but also need
# to customize a few per-server settings. Include files can include
# other files, so use this wisely.
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
#
# include /path/to/local.conf
# include /path/to/other.conf
# 当配置多个redis时,可能大部分配置一样,而对于不同的redis,只有少部分配置需要定制
# 就可以配置一个公共的模板配置。
# 对于具体的reids,只需设置少量的配置,并用include把模板配置包含进来即可。
#
# 值得注意的是,对于同一个配置项,redis只对最后一行的有效
# 所以为避免模板配置覆盖当前配置,应在配置文件第一行使用include
# 当然,如果模板配置的优先级比较高,就在配置文件最后一行使用include

################################ GENERAL #####################################

# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
# yes为使用守护进程,此时redis的进程ID会被写进 pidfile的配置中
daemonize yes

# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
# default. You can specify a custom pid file location here.
# 当redis以守护进程的方式启动时,redis的进程ID将会写在这个文件中
pidfile /var/run/redis.pid

# Accept connections on the specified port, default is 6379.
# If port 0 is specified Redis will not listen on a TCP socket.
# redis 启动的端口。【应该知道redis是服务端吧】
port 6379

# TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
# 最大链接缓冲池的大小,这里应该是指的未完成链接请求的数量
#(测试值为1时,仍可以有多个链接)
# 但该值与listen函数中的backlog意义应该是相同的,源码中该值就是被用在了listen函数中
# 该值同时受/proc/sys/net/core/somaxconn 和 tcp_max_syn_backlog(/etc/sysctl.conf中配置)的限制
# tcp_max_syn_backlog 指的是未完成链接的数量
tcp-backlog 511

# By default Redis listens for connections from all the network interfaces
# available on the server. It is possible to listen to just one or multiple
# interfaces using the "bind" configuration directive, followed by one or
# more IP addresses.
# 绑定ip,指定ip可以连接到redis
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1

# Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# 这个应该就是以文件形式创建的socket
# unixsocket /tmp/redis.sock
# unixsocketperm 755

# Close the connection after a client is idle for N seconds (0 to disable)
# 超时断链机制,如果一个链接在N秒内没有任何操作,则断开该链接
# N为0时,该机制失效
timeout 0

# TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
# equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
# 就像心跳检测一样,检查链接是否保持正常,同时也可以保持正常链接的通信
# 建议值为60
#
# A reasonable value for this option is 60 seconds.
tcp-keepalive 0

# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
# 日志级别
loglevel notice

# Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
# 日志存放路径,默认是输出到标准输出,但当以守护进程方式启动时,默认输出到/dev/null(传说中的linux黑洞)
logfile ""

# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# yes 表示将日志写到系统日志中
# syslog-enabled no

# Specify the syslog identity.
# 当syslog-enabled为yes时,指定系统日志的标示为 redis
# syslog-ident redis

# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# 指定系统日志的设备
# syslog-facility local0

# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
# redis的数据库数量,默认16个(0~15),默认使用第0个。
databases 16

################################ SNAPSHOTTING ################################
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
# 快照,即将数据写到硬盘上,在<seconds>秒内,至少有<changes>次写入数据库操作
# 则会将数据写入硬盘一次。
# 将save行注释掉则永远不会写入硬盘
# save "" 表示删除所有的快照点
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving at all commenting all the "save" lines.
#
# It is also possible to remove all the previously configured save
# points by adding a save directive with a single empty string argument
# like in the following example:
#
# save ""

save 900 1
save 300 10
save 60 10000

# By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
# 当做快照失败的时候,redis会停止继续向其写入数据,保证第一时间发现redis快照出现问题
# 当然,通过下面配置为 no,即使redis快照失败,也能继续向redis写入数据
stop-writes-on-bgsave-error yes

# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
# 快照的时候,是否用LZF压缩,使用压缩会占一定的cpu,但不使用压缩,快照会很大
rdbcompression yes

# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
# 数据校验,快照末尾会存放一个校验值,保证数据的准确性
# 但数据校验会使性能下降约10%,默认开启校验
rdbchecksum yes

# The filename where to dump the DB
# 快照的名字
dbfilename dump.rdb

# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
#
# 快照存放的目录
# linux root下测试,会发现该进程会在当前目录下创建一个dump.rdb
# 但快照却放在了根目录/下,重启的时候,是不会从快照中恢复数据的
# 当把根目录下的dump.rdb文件拷贝到当前目录的时候,再次启动,就会从快照中恢复数据
# 而且以后的快照也都在当前目录的dump.rdb中做操作
#
# 值得一提的是,快照是异步方式的,如果在还未达到快照的时候,修改了数据,而且redis发生问题crash了
# 那么中间的修改数据是不会被保存到dump.rdb快照中的
# 解决办法就是用Append Only Mode的同步模式(下面将会有该配置项)
# 将会把每个操作写到Append Only File中,该文件也存放于当前配置的目录
# 建议使用绝对路径!!!
#
dir ./

################################# REPLICATION #################################

# Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. Note that the configuration is local to the slave
# so for example it is possible to configure the slave to save the DB with a
# different interval, or to listen to another port, and so on.
#
# 主从复制,类似于双机备份。
# 配置需指定主机的ip 和port
# slaveof <masterip> <masterport>

# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# 如果主机redis需要密码,则指定密码
# 密码配置在下面安全配置中
# masterauth <master-password>

# When a slave loses its connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
# still reply to client requests, possibly with out of date data, or the
# data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale-data is set to 'no' the slave will reply with
# an error "SYNC with master in progress" to all the kind of commands
# but to INFO and SLAVEOF.
#
# 当从机与主机断开时,即同步出现问题的时候,从机有两种处理方式
# yes, 继续响应客户端请求,但可能有脏数据(过期数据、空数据等)
# no,对客户端的请求统一回复为“SYNC with master in progress”,除了INFO和SLAVEOF命令
slave-serve-stale-data yes

# You can configure a slave instance to accept writes or not. Writing against
# a slave instance may be useful to store some ephemeral data (because data
# written on a slave will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# Since Redis 2.6 by default slaves are read-only.
#
# Note: read only slaves are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only slave exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only slaves using 'rename-command' to shadow all the
# administrative / dangerous commands.
# slave只读选项,设置从机只读(默认)。
# 即使设置可写,当下一次从主机上同步数据,仍然会删除当前从机上写入的数据
# 【待测试】:主机与从机互为slave会出现什么情况?
# 【预期三种结果】:1. 提示报错 2. 主从服务器数据不可控 3. 一切正常
slave-read-only yes

# Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# 从服务器向主服务器发送心跳包,默认10发送一次
# repl-ping-slave-period 10

# The following option sets the replication timeout for:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.
# 2) Master timeout from the point of view of slaves (data, pings).
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# 超时响应时间,值必须比repl-ping-slave-period大
# 批量数据传输超时、ping超时
# repl-timeout 60

# Disable TCP_NODELAY on the slave socket after SYNC?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to slaves. But this can add a delay for
# the data to appear on the slave side, up to 40 milliseconds with
# Linux kernels using a default configuration.
#
# If you select "no" the delay for data to appear on the slave side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and slaves are many hops away, turning this to "yes" may
# be a good idea.
# 主从同步是否延迟
# yes 有延迟,约40毫秒(linux kernel的默认配置),使用较少的数据包,较小的带宽
# no 无延迟(减少延迟),但需要更大的带宽
repl-disable-tcp-nodelay no

# Set the replication backlog size. The backlog is a buffer that accumulates
# slave data when slaves are disconnected for some time, so that when a slave
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the slave missed while
# disconnected.
#
# The biggest the replication backlog, the longer the time the slave can be
# disconnected and later be able to perform a partial resynchronization.
#
# The backlog is only allocated once there is at least a slave connected.
#
# 默认情况下,当slave重连的时候,会进行全量数据同步
# 但实际上slave只需要部分同步即可,这个选项设置部分同步的大小
# 设置值越大,同步的时间就越长
# repl-backlog-size 1mb

# After a master has no longer connected slaves for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last slave disconnected, for
# the backlog buffer to be freed.
#
# A value of 0 means to never release the backlog.
#
# 主机的后台日志释放时间,即当没有slave连接时,过多久释放后台日志
# 0表示不释放
# repl-backlog-ttl 3600

# The slave priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a slave to promote into a
# master if the master is no longer working correctly.
#
# A slave with a low priority number is considered better for promotion, so
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
#
# However a special priority of 0 marks the slave as not able to perform the
# role of master, so a slave with priority of 0 will never be selected by
# Redis Sentinel for promotion.
#
# By default the priority is 100.
# 当主机crash的时候,在从机中选择一台作为主机,数字越小,优先级越高
# 0 表示永远不作为主机,默认值是100
slave-priority 100

# It is possible for a master to stop accepting writes if there are less than
# N slaves connected, having a lag less or equal than M seconds.
#
# The N slaves need to be in "online" state.
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the slave, that is usually sent every second.
#
# This option does not GUARANTEES that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough slaves
# are available, to the specified number of seconds.
#
# For example to require at least 3 slaves with a lag <= 10 seconds use:
#
# 当slave数量小于min-slaves-to-write,且延迟小于等于min-slaves-max-lag时,
# 主机停止写入操作
# 0表示禁用
# 默认min-slaves-to-write为0,即禁用。min-slaves-max-lag为10
# min-slaves-to-write 3
# min-slaves-max-lag 10
#
# Setting one or the other to 0 disables the feature.
#
# By default min-slaves-to-write is set to 0 (feature disabled) and
# min-slaves-max-lag is set to 10.

################################## SECURITY ###################################

# Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# redis密码,默认不配置,即无密码
# 这里注意,如果设置了密码,应该设置一个复杂度比较高的密码
# 因为redis的速度很快,每秒可以尝试150k次的密码测试,很容易对其进行暴力破解(跑码)。
# 疑问:这里为什么不设置一个针对主机的测试次数限制的,例如每10次,则禁止建立连接1个小时!
# requirepass foobared

# Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# 命令重命名,将命令重命名为另一个字符串标识
# 如果命令为空串(""),则会彻底禁用该命令
# 命令重命名,会对写AOF(Append of file)文件、slave从机造成一些问题
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to slaves may cause problems.

################################### LIMITS ####################################

# Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# 这只redis的最大连接数目,默认设置为10000个客户端
# 当超过限制时,将段开新的连接,并响应“max number of clients reached”
# maxclients 10000

# Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
# redis的最大内存限制,如果达到最大内存,会按照下面的maxmemory-policy进行清除
# 如果不能再清除或者maxmemory-policy为noeviction,则对于需要增加空间的操作,将会返回错误
# maxmemory <1024*1024*1024>
maxmemory 200mb

# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key accordingly to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are not suitable keys for eviction.
#
# At the date of writing this commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
# 内存删除策略,默认volatile-lru,利用LRU算法,删除过期的key
maxmemory-policy volatile-lru

# LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can select as well the sample
# size to check. For instance for default Redis will check three keys and
# pick the one that was used less recently, you can change the sample size
# using the following configuration directive.
#
# LRU算法与最小TTL算法只是相对精确的算法,并不是绝对精确的算法
# 为了更精确,可以设置样本个数
# 比如设置3个样本,redis会选取三个key,并选择删除那个上次使用时间最远的
# maxmemory-samples 3

############################## APPEND ONLY MODE ###############################

# By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information.
# 将对redis所有的操作都保存到AOF文件中
# 因为dump.rdb是异步的,在下次快照到达之前,如果出现crash等问题,会造成数据丢失
# 而AOF文件时同步记录的,所以会完整的恢复数据

appendonly no

# The name of the append only file (default: "appendonly.aof")
# AOF文件的名字

appendfilename "appendonly.aof"

# The fsync() call tells the Operating System to actually write data on disk
# instead to wait for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log . Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec".
# redis的数据同步方式,三种
# no,redis本身不做同步,由OS来做。redis的速度会很快
# always,在每次写操作之后,redis都进行同步,即写入AOF文件。redis会变慢,但是数据更安全
# everysec,折衷考虑,每秒同步一次数据。【默认】

# appendfsync always
appendfsync everysec
# appendfsync no

# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
# redis的同步方式中,always和everysec,快照和写AOF可能会执行大量的硬盘I/O操作,
# 而在一些Linux的配置中,redis会阻塞很久,而redis本身并没有很好的解决这一问题。
# 为了缓和这一问题,redis提供no-appendfsync-on-rewrite选项,
# 即当有另外一个进程在执行保存操作的时候,redis采用no的同步方式。
# 最坏情况下会有延迟30秒的同步延迟。
# 如果你觉得这样做会有潜在危险,则请将该选项改为yes。否则就保持默认值no(基于稳定性考虑)。

no-appendfsync-on-rewrite no

# Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature.
# 自动重写AOF文件
# 当AOF日志文件大小增长到指定百分比时,redis会自动隐式调用BGREWRITEAOF来重写AOF文件
# redis会记录上次重写AOF文件之后的大小,
# 如果当前文件大小增加了auto-aof-rewrite-percentage,则会触发重写AOF日志功能
# 当然如果文件过小,比如小于auto-aof-rewrite-min-size这个大小,是不会触发重写AOF日志功能的
# auto-aof-rewrite-percentage为0时,禁用重写功能

auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

################################ LUA SCRIPTING ###############################

# Max execution time of a Lua script in milliseconds.
#
# If the maximum execution time is reached Redis will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
#
# When a long running script exceed the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write commands was
# already issue by the script but the user don't want to wait for the natural
# termination of the script.
#
# Set it to 0 or a negative value for unlimited execution without warnings.
# LUA脚本的最大执行时间(单位是毫秒),默认5000毫秒,即5秒
# 如果LUA脚本执行超过这个限制,可以调用SCRIPT KILL和SHUTDOWN NOSAVE命令。
# SCRIPT KILL可以终止脚本执行
# SHUTDOWN NOSAVE关闭服务,防止LUA脚本的写操作发生
# 该值为0或者负数,表示没有限制时间
lua-time-limit 5000

################################## SLOW LOG ###################################

# The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands.
# 记录执行比较慢的命令
# 执行比较慢仅仅是指命令的执行时间,不包括客户端的链接与响应等时间
# slowlog-log-slower-than 设定这个慢的时间,单位是微妙,即1000000表示1秒,0表示所有命令都记录,负数表示不记录
# slowlog-max-len表示记录的慢命令的个数,超过限制,则最早记录的命令会被移除
# 命令的长度没有限制,但是会消耗内存,用SLOWLOG RESET来收回这些消耗的内存

# The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
slowlog-log-slower-than 10000

# There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
slowlog-max-len 128

################################ LATENCY MONITOR ##############################

# The Redis latency monitoring subsystem samples different operations
# at runtime in order to collect data related to possible sources of
# latency of a Redis instance.
#
# Via the LATENCY command this information is available to the user that can
# print graphs and obtain reports.
#
# The system only logs operations that were performed in a time equal or
# greater than the amount of milliseconds specified via the
# latency-monitor-threshold configuration directive. When its value is set
# to zero, the latency monitor is turned off.
#
# By default latency monitoring is disabled since it is mostly not needed
# if you don't have latency issues, and collecting data has a performance
# impact, that while very small, can be measured under big load. Latency
# monitoring can easily be enalbed at runtime using the command
# "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
# 延迟监控器
# redis延迟监控子系统在运行时,会抽样检测可能导致延迟的不同操作
# 通过LATENCY命令可以打印相关信息和报告, 命令如下(摘自源文件注释):
# LATENCY SAMPLES: return time-latency samples for the specified event.
# LATENCY LATEST: return the latest latency for all the events classes.
# LATENCY DOCTOR: returns an human readable analysis of instance latency.
# LATENCY GRAPH: provide an ASCII graph of the latency of the specified event.
#
# 系统只记录超过设定值的操作,单位是毫秒,0表示禁用该功能
# 可以通过命令“CONFIG SET latency-monitor-threshold <milliseconds>” 直接设置而不需要重启redis

latency-monitor-threshold 0

############################# Event notification ##############################

# Redis can notify Pub/Sub clients about events happening in the key space.
# This feature is documented at http://redis.io/topics/keyspace-events
#
# For instance if keyspace events notification is enabled, and a client
# performs a DEL operation on key "foo" stored in the Database 0, two
# messages will be published via Pub/Sub:
#
# PUBLISH __keyspace@0__:foo del
# PUBLISH __keyevent@0__:del foo
#
# It is possible to select the events that Redis will notify among a set
# of classes. Every class is identified by a single character:
#
# K Keyspace events, published with __keyspace@<db>__ prefix.
# E Keyevent events, published with __keyevent@<db>__ prefix.
# g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
# $ String commands
# l List commands
# s Set commands
# h Hash commands
# z Sorted set commands
# x Expired events (events generated every time a key expires)
# e Evicted events (events generated when a key is evicted for maxmemory)
# A Alias for g$lshzxe, so that the "AKE" string means all the events.
#
# The "notify-keyspace-events" takes as argument a string that is composed
# by zero or multiple characters. The empty string means that notifications
# are disabled at all.
#
# Example: to enable list and generic events, from the point of view of the
# event name, use:
#
# notify-keyspace-events Elg
#
# Example 2: to get the stream of the expired keys subscribing to channel
# name __keyevent@0__:expired use:
#
# notify-keyspace-events Ex
#
# By default all notifications are disabled because most users don't need
# this feature and the feature has some overhead. Note that if you don't
# specify at least one of K or E, no events will be delivered.
# 事件通知,当事件发生时,redis可以通知Pub/Sub客户端
# 空串表示禁用事件通知
# 注意:K和E至少要指定一个,否则不会有事件通知
notify-keyspace-events ""

############################### ADVANCED CONFIG ###############################

# Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
# 当hash数目比较少,并且最大元素没有超过给定值时,Hash使用比较有效的内存数据结构来存储。
# 即ziplist的结构(压缩的双向链表),参考:http://blog.csdn.net/benbendy1984/article/details/7796956
hash-max-ziplist-entries 512
hash-max-ziplist-value 64

# Similarly to hashes, small lists are also encoded in a special way in order
# to save a lot of space. The special representation is only used when
# you are under the following limits:
# List配置同Hash
list-max-ziplist-entries 512
list-max-ziplist-value 64

# Sets have a special encoding in just one case: when a set is composed
# of just strings that happens to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
# Sets的元素如果全部是整数(10进制),且为64位有符号整数,则采用特殊的编码方式。
# 其元素个数限制配置如下:
set-max-intset-entries 512

# Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
# sorted set 同Hash和List
zset-max-ziplist-entries 128
zset-max-ziplist-value 64

# HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is converted into the dense representation.
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. The value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
# 关于HyperLogLog的介绍:http://www.redis.io/topics/data-types-intro#hyperloglogs
# HyperLogLog稀疏表示限制设置,如果其值大于16000,则仍然采用稠密表示,因为这时稠密表示更能有效使用内存
# 建议值为3000
hll-sparse-max-bytes 3000

# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into a hash table
# that is rehashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
#
# The default is to use this millisecond 10 times every second in order to
# active rehashing the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply form time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
# 每100毫秒,redis将用1毫秒的时间对Hash表进行重新Hash。
# 采用懒惰Hash方式:操作Hash越多,则重新Hash的可能越多,若根本就不操作Hash,则不会重新Hash
# 默认每秒10次重新hash主字典,释放可能释放的内存
# 重新hash会造成延迟,如果对延迟要求较高,则设为no,禁止重新hash。但可能会浪费很多内存
activerehashing yes

# The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
#
# The limit can be set differently for the three different classes of clients:
#
# normal -> normal clients including MONITOR clients
# slave -> slave clients
# pubsub -> clients subscribed to at least one pubsub channel or pattern
#
# The syntax of every client-output-buffer-limit directive is the following:
#
# 客户端输出缓冲区限制,当客户端从服务端的读取速度不够快时,则强制断开
# 三种不同的客户端类型:normal、salve、pubsub,语法如下:
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
#
# Instead there is a default limit for pubsub and slave clients, since
# subscribers and slaves receive data in a push fashion.
#
# Both the hard or the soft limit can be disabled by setting them to zero.
# 当达到硬限制,或者达到软限制且持续了算限制秒数,则立即与客户端断开
# 限制设为0表示禁止该功能
# 普通用户默认不限制
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60

# Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeout, purging expired keys that are
# never requested, and so forth.
#
# Not all tasks are performed with the same frequency, but Redis checks for
# tasks to perform accordingly to the specified "hz" value.
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
# redis调用内部函数执行的后台任务的频率
# 后台任务比如:清除过期数据、客户端超时链接等
# 默认为10,取值范围1~500,
# 对延迟要求很低的可以设置超过100以上
hz 10

# When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
# 当修改AOF文件时,该设置为yes,则每生成32MB的数据,就进行同步
aof-rewrite-incremental-fsync yes

Docker安装Redis
https://leo03w.github.io/2022/09/23/Docker安装Redis/
作者
Leo
发布于
2022年9月23日
许可协议